π/n 等效相移光码分多址编解码器研究

朱华涛 蒲 涛 郑吉林* 方 涛 陈寅芳

(解放军理工大学通信工程学院,江苏南京 210007)

摘要 提升码字容量是光码分多址(OCDMA)系统的关键,寻找更优性能的码字构造方法是提高系统软容量的常用途径。绕开复杂的码字构造方法,提出了 π/n 等效相移的 OCDMA 编解码器制作方法,该方法在已有码字的基础上通过物理结构的变化可将 OCDMA 系统软容量提高了 5 倍。基于光纤光栅平台制作了同码字的 π/5 和 2π/5 相移的编解码器,仿真与实验结果表明,π/n 相移编解码器可得到优于普通编解码器的性能。 关键词 光通信;光码分多址;等效相移;编解码器 中图分类号 TN914.53 文献标识码 A doi: 10.3788/CJL201441.s105015

Study of π/n Optical Code Division Multiple Access En/Decoders Based on Equivalent Phase Shift

Zhu Huatao Pu Tao Zheng Jilin Fang Tao Chen Yinfang

(Institute of Communication Engineering, PLA University of Science and Technology, Nanjing, Jiangsu 210007, China)

Abstract Improving the code capacity is a key of optical code division multiple access (OCDMA) system, and the usual method is to search for new code structure. We propose a novel way to facture π/n equivalent phase shift (EPS) OCDMA en/decoders without studying the code structure. The method only changes the physical structure of fiber grating and can enhance the soft-capacity for 5 times. Based on the fiber grating fabrication plot we fabric $\pi/5$ - and $2\pi/5$ -EPS en/decoders. The results of simulation and experiment show the π/n EPS en/decoders can get better performance than the ordinarily one.

Key words optical communications; optical code division multiple access; equivalent phase shift; en/decoder OCIS codes 050.2770; 050.5080; 060.2310

1 引 言

光码分多址技术(OCDMA)可提供异步随机的 复用接入、软容量、潜在的安全性和可控的服务性 能,近年来备受青睐^[1-7]。软容量的提高是 OCDMA研究的一个热点,主要方案是寻找更优的 码字和新的码字算法^[6-7]。编解码器是OCDMA 系统的关键,目前用作OCDMA编解码器的主要有 空间光调制器(SLM)^[8]、微环谐振腔(MRR)^[9]、平 面光波导(PLC)^[10]、平面阵列波导光栅(AWG)^[11] 和布拉格光栅(FBG)^[12-13]。其中,FBG 因其低成 本、高效率、便于大批量生产等优势而受到广泛研 究。基于真实相移技术(TPS),文献[14]提出±π/2 相移的编解码器,克服了 $0/\pi$ 相移的编解码器通过 时域波形可推断出码字序列这一安全漏洞,但是真 实相移对位移平台精度要求高,制作成本较大。文 献[15]中提出基于 FBG 的等效相移(EPS),该技术 仅用普通的相位掩模板和亚微米级的位移平台,即 可制作出有精确相位编码的光栅。基于 EPS,文献 [16]实现了 3π 和 5π 相移的编解码器,可以提高系 统软容量 2 倍,但多 π 相移使光栅变长,降低了多 π 相移编解码器的实用性。

本文提出了 π/n 相移的编解码器制作方法,该 方法无需构造新型码字,它通过物理结构的变化,在 保证自互相关性能的情况下扩展了系统软容量。用

基金项目:国家自然科学基金(61032005,61177065,61174199)、江苏省自然科学基金(BK2012058)

作者简介:朱华涛(1990-),男,硕士研究生,主要从事光码分多址与光隐藏通信方面的研究。E-mail: zhuhuatao@163.com 导师简介: 蒲 涛(1974-),男,教授,硕士生导师,主要从事光纤通信系统、微波光子学、无线宽带接入技术和光传感技术等方面的研究。E-mail: nj_putao@163.com

* 通信联系人。E-mail: zhengjilinjs@126.com

收稿日期: 2013-10-08; 收到修改稿日期: 2013-11-05

127 位 Gold 码作为地址码,基于亚微米精度的光纤 光栅位移平台,制作了 $\pi/5$ 和 $2\pi/5$ 相移的编解码 器;仿真结果表明,n取 5 至 10 时,编解码性能优于 普通编解码器;半实物仿真结果验证了 π/n 相移编 解码器的可用性,该编解码器可使 OCDMA 系统软 容量提高 5 倍。

$2 \pi/n$ 相移的编解码器原理

EPS 光纤光栅是通过调制采样光栅的采样周期,使得采样光栅的-1 级信道产生目标响应的方法。与 TPS 相比,EPS 不用调制光栅周期,通过简单的调制采样周期即可调制相位。等效相移光栅可实现多进制相位编码。

第 m 级光栅的折射率调制为

$$\Delta n_{m}(z) = \begin{cases} A_{m} \exp\left(j\frac{2\pi z}{\Lambda} + j\frac{2m\pi z}{P}\right), \\ z < z_{0} \\ A_{m} \exp\left[j\frac{2\pi z}{\Lambda} + j\frac{2m\pi(z + \Delta P)}{P}\right], \\ z \ge z_{0} \end{cases}$$
(1)

式中 $A_m(z)$ 是 m 级光栅的傅里叶系数, Λ 为光栅周 期, P 为采样周期。(1) 式下式相比上式多了一个相 位因子 $\varphi = 2m\pi\Delta P/P$, 即第 m 级光栅的折射率调制 在 z_0 处产生了相移 φ 。取 $\Delta P = P/2n$ 时, 可以得到 π/n 相移 (n = a/b, a 和b 均为整数)。

图 1 是 7 位码片的编解码器的折射率调制结构,图 1(a)是 0/π 相移编解码器,图 1(b)是 π/n 相移编解码器,两编解码器相比,后者比前者多加了一 个 P/2n 项,编解码器其他参数一样。由图 1 可见, π/n 相移的编解码器设计灵活,P 的大小在百微米 code:1 0 1 1 1 0 0

(a) $0/\pi$ -EPS; (b) π/n -EPS

量级,制作光栅的位移平台仅需要微米量级即可。

3 π/n 相移的编解码器性能分析

在 OCDMA 系统中,编解码器性能常用自相关 峰旁瓣比(P/W)、自互相关峰比(P/C)两个参量来 衡量^[16]。在本节中,编码器地址码为 OC1,编解码 器的 P大小为 300 μ m,位移平台精度设为 30 μ m,则 1/n可以取 19 个小于 2 的不同值。图 2 是 1/n取不同值时编解码器对应的最高 P/W,1/n=0 代 表普通的 $0/\pi$ 相移编解码器,随着 n 的增大,P/W先变大后减小,在 1/n=1 处到最小值后开始增大。 以 1/n=0为基准,1/n取 0.1,0.2,1.7,1.9 和 2.0 时的 P/W 值大于 1/n取 0 时,n取 0.9 和 1 时P/W的值为 1/n=0 时的一半。即就自相关性而言,n取 5~10 和 0.5~0.58 时编解码器性能优于 $0/\pi$ 相 移编解码器。

图 2 π/n 相移编解码器的自相关特性

Fig. 2 Auto-correlation of π/n -EPS en/decoders

图 3 分别为 π/n 相移编解码器的自相关特性和 互相关特性随光源脉宽的变化曲线。就自相关性而 言,不同 1/n 取值时,其变化趋势一致,随着光源脉 宽的增大先增大后减小。就互相关性而言,P/C 是 不同 1/n 值的编解码器与 $0/\pi$ 相移编解码器的自互 相关峰比,1/n=0.1 有最优的互相关性,1/n 值越 大,互相关性能逐渐降低,在光源脉宽为 2~4 ps 时,各编解码器 P/C 值相近,由此可见 $0/\pi$ 相移编 解码器与普通编解码器之间互相关性良好。

可以看出,对于 OCDMA 系统而言,π/n 相移 编解码器可以提高系统的软容量,以优于 0/π 相移 编解码器的自相关性为准,软容量可提升 5 倍,以不 劣于 0/π 相移编解码器自相关性的一半为准,软容 量可提升 18 倍。在实验中,位移平台的精度在亚微 米级,n 可以取更多的值,即软容量可以再提升。

图 3 π/n 相移编解码器的自互相关性随光源脉宽变化曲线。(a)自相关特性;(b)互相关特性 Fig. 3 Auto- and cross-correlations of π/n -EPS en/decoders versus the pulse width of optical source. (a) auto-correlation; (b) cross-correlation

图 4 编解码器反射谱及性能。(a)实验(实线)和仿真(虚线)测得编码器的反射谱;(b),(c)仿真得到的编解码器性能;(d), (e)半实物仿真得到的编解码器性能

Fig. 4 Reflection spectra and performances of en/decoders, (a) Reflection spectra of en/decoders by experiment (solid) and simulation (dash); (b),(c) en/decoding performance in simulation; (d),(e) en/decoding performance combined experiment with simulation

4 实验与仿真

基于等效相移,制作了 127 位的 $\pi/5$ 和 $2\pi/5$ 相 移的编解码器,其中地址码为 Gold 码,编解码器的中 心波长在 1558 nm,采样周期 P 大小为 0.306 mm,折 射率调制幅度为 1.0×10^{-4} ,波长间隔为 3.2 nm。激 光器照射在光栅上的光斑直径为 80 μ m,因此占空比 为0.29。图 4 是实测及仿真的 $\pi/5$ 相移编解码器反射 谱及性能,编码器地址码为 OC1,(a)中实线为实验制 作的编码器,虚线为仿真的编码器,可以看出两反射 谱拟合得较好。编解码器采用+1 级光栅进行编码, 对应的编码区范围为 1558~1564.4 nm。将P/W和 P/C 用对数形式表示,光源中心波长取1561 nm,脉宽 为 5 ps,(b)和(c)为仿真得到的编解码器性能,实验制作和仿 真所得编解码器 P/W 差为 2 dB,P/C 差仅为0.2 dB, 即实验制作的编解码器与仿真的编解码器性能相当。

基于实测的编解码器数据,搭建了如图 5 所示的 2.5 Gb/s 原理验证性多用户仿真系统。在发送端,光 源为 2.5 GHz 的高斯脉冲光,半峰全宽(FWHM)为 2.5 ps,中心波长在 1560.3 nm。调制序列为 $2^{31}-1$ 的伪随机序列,在编码器的前端加光可调延时线 (OTDL),编码器 1,2,3 的地址码均为 OC1,相移分别 对应 $\pi/5,2\pi/5,0/\pi$,编码器 4 的地址码为 OC2,相移 为 $0/\pi$,合路的编码信号经过放大后解码。在接收 端,解码器可以替换为解码器 2,3,4,解码后的信号经 过光探测器 (PD)转化为电信号,由数据时钟恢复 (CDR)模块恢复出数据和时钟,恢复的数据和时钟信 号由误码仪(BER)判决误码情况,用误码率 $R_{\rm BE}$ 来 表示。

同地址码的用户之间同样具有良好的互相关性。 图 6 是各用户的误码率曲线,四用户均可无误码接 收,这验证了 π/n 相移编解码器的良好自相关性以及 与普通编解码器之间的互相关性。其中用户 1 和 4 误码率曲线相近,用户 2、3 误码率曲线相近,用户 1 的接收机灵敏度较 3 高 1.5 dBm,此结果与第 3 节中

图 6 不同用户的误码率曲线

编解码器特性的分析吻合。由此可见,相同地址码的 用户之间,由于其相移不同,彼此同样具有较好的互 相关性。与传统的 0/π 相移的编解码器相比,π/n 相 移的编解码器具有相似的可用性。

5 结 论

提出了 π/n 相移的 OCDMA 编解码器制作方法, 仿真结果表明地址码相同时, π/n 相移编解码器具有 良好的自相关性,不同的编解码器之间具有良好的互 相关性,且 n 取 5 至 10 时,编解码性能优于普通编解 码器,系统软容量可提升 5 倍。基于亚微米精度的光 纤光栅位移平台,制作了 $\pi/5$ 和 $2\pi/5$ 相移的编解码 器,半实物仿真表明 π/n 相移的用户与 $0/\pi$ 相移的用 户之间有着相近的性能。这样,无需构造新型码字, 即可提高 OCDMA 系统的软容量。

Fig. 6 BER curves versus received power

参考文献

- 1 J A Salehi. Code division multiple-access technique in optical fiber networks, part I: fundamental principles[J]. IEEE Trans Commun, 1989, 37(8): 824-833.
- 2 X Wang, K Kitayama. Analysis of beat noise in coherent and incoherent time-spreading OCDMA[J]. J Lightwave Technol, 2004, 22(10): 2226-2235.
- 3 Fang Tao, Lu Lin, Li Yuquan, *et al.*. Application of optical pulse source with frequency chirp in OCDMA system [J]. Acta Optica Sinica, 2009, 29(3): 623-628.

方 涛,卢 麟,李玉权,等. 啁啾脉冲光源用于光码分多址系统的 研究[J]. 光学学报,2009, 29(3): 623-628.

4 Zhu Yingxun, Wang Rong, Ding Xiaoguang, *et al.*. Performance analysis of temporal phase optical code-division multiple access system [J]. Acta Optica Sinica, 2008, 28(10): 1874-1882.
4 With T. T. T. T. W. W. T. T. Bell, *G. P. T. D. Status and Status and*

朱英勋,王 荣,丁晓光,等.时域相位光码分多址系统性能分析 [J].光学学报,2008,28(10):1874-1882.

- 5 T M S Khattab, H M Alnuweiri. Optical orthogonal code construction using rejected delays reuse for increasing sub wavelengthswitching capacity[J]. J Lightwave Technol, 2006, 24(9): 3280-3287.
- 6 Chen Yinfang, Wang Rong, Pu Tao, *et al.*. Experimental demonstration of measuring optical threshold in nonlinear optical loop mirror based on variable pulse duty cycle[J]. Chinese J Lasers, 2012, 39(6): 0605004.

陈寅芳,王 荣,蒲 涛,等.变占空比脉冲测量非线性光环镜阈 值特性的实验研究[J].中国激光,2012,39(6):0605004.

7 G Paryanti, D Sadot, V Lyandres, *et al.*. Achieving channel capacity using asymmetric signaling control in optical code division multiple access[J]. J Lightwave Technol, 2006, 24(11), 4233-4227.

- 8 Z Jiang, D Seo, S Yang, et al.. Four-user 10-Gb/s spectrally phasecoded OCDMA system operating at ~ 30 fJ/bit[J]. IEEE Photon Technol Lett, 2005, 17(3): 705-707.
- 9 A Agarwal, P Toliver, R Menendaz, *et al.*. Spectrally efficient sixuser coherent OCDMA system using reconfigurable integrated ring resonator circuits[J]. IEEE Photon Technol Lett, 2006, 18(18): 1952-1954.
- 10 R G Broeke, J Cao, C Ji, *et al.*. Optical-CDMA in InP[J]. IEEE J Sel Top Quantum Electron, 2007, 13(5), 1497-1507.
- 11 J Cao, R G Broeke, N K Fontaine, *et al.*. Demonstration of spectral phase O-CDMA encoding and decoding in monolithically integrated arrayed-waveguide-grating based encoder[J]. IEEE Photon Technol Lett, 2006, 18(24): 2602-2604.
- 12 P C Teh, P Petropoulos, M Ibsen, et al.. A comparative study of the performance of seven- and 63-chip optical code-division multiple-access encoders and decoders based on superstructured fiber Bragg gratings [J] J Lightwave Technol, 2009, 9(9): 1352-1365.
- 13 J Zheng, R Wang, T Pu, *et al.*. Phase-controlled superimposed FBGs and their applications in spectral-phase en/decoding[J]. Opt Express, 2011, 19(9): 8580-8595.
- 14 B Dai, Z. Gao, X Wang, *et al.*. Performance comparison of $0/\pi^{-}$ and $\pm \pi/2$ -phase-shifted superstructured fiber Bragg grating en/decoder [J]. Opt Express, 2011, 19(13): 12248–12260.
- 15 Y Dai, X. Chen, D Jiang, *et al.*. Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period[J]. IEEE Photon Technol Lett, 2004, 16(10): 2284-2286.
- 16 Y Cheng, J Li, Z Yin, et al.. OCDMA en/decoders employing multiple π equivalent phase shifts[J]. IEEE Photon Technol Lett, 2009, 21(24): 1795-1797.

栏目编辑: 王晓琰